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BRIDGING MANIPULATIVE-EXPLORATORY PLAY AND THE
DEVELOPMENT OF MATHEMATICAL CONCEPTS IN A
TECHNOLOGY-RICH ENVIRONMENT

Sergei Abramovich, University of Georgia

The paper shows that the study of mathematics can be organized as a complex learning
enterprise integrating manipulative-exploratory play into a newer software tool environ-
ment — a dynamic geometry, a spreadsheet, and a relation grapher, and it reflects work
done in a lab setting with preservice and inservice teachers enrolled in contemporary gen-
eral mathematics and problem solving courses. The psychological aspects of learning math-
ematical concepts through integrating off and on computer activities and possible implica-
tions of the approach for mathematics teacher education are highlighted from Vygotskian
perspective.

The role of play in learning abstract structures has received much attention in
educational psychology research. Particularly, Diernes (1964) studied children’s
learning of mathematical concepts from experiences with concrate materials un-
der the assumption that play and the higher cognitive activities are closely con-
nected. With the advent of advanced technology, it has become considered helpful
to use suitably designed computer-based simulations of concrete materials in the
learning of mathematics (Thompson, 1992; Kaput, 1994; Steffe & Wiegel, 1994).
These uses of a computer, however, involve topics not beyond the elementary and
middle levels. The appearance of newer software tools with their tremendous po-
tential for promoting the spirit of exploration and discovery in mathematics class-
rooms makes it possible to extend the use ot concrete materials to more advanced
levels of mathematics and to consider play associated with both off and on com-
puter activities. Note we consider the notion of play in the spirit of Hoyles and
Noss (1992); that is, student engagement into a play within a learning environment
implies exploration, experimentation, wondering about, and enjoyment.

The paper suggests that integrating manipulative-exploratory play into a mul-
tiple-application environment enhances the study of advanced mathematical con-
cepts and highlights three essential functions of a computer as a learning medium.
First, the variety of available colors and shapes places the choice of manipulatives
under the control of learners, and this may strengthen their constructive activity
and smooth possible differences in the perception and conceptualization of color
and shape (Ratner 1991). Second, the computer environment takes into account
indistinct boundaries of manipulative play which may quite imperceptibly move
over to an exploration (Dienes, 1964). Manipulative-exploratory play is, in fact, a
search for regularities, something that may become an object of manipulation at a
higher level. This suggests that the third function of a computer in this setting is to
provide the leamer with an opportunity of instant transfer from screen images to
computing activities and back; that is, the use of appropriate applications inte-
grated into the medium allows the generating of numerical and/or diagrammatic
evidence as abstractions from a number of simultaneously scrutinized concrete
situations presented by these images. Regularities can then be studied again through
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play at a higher level of cognitive activity. In addition to these functions, the ap-
proach considers learning to be deeply anchored in interactive instruction and
emphasizes the role of a teacher in developing students’ mathematics knowledge.
This role assumes a teacher to be a partner in advancement, one who links small-
group explorations and whole class discussion, and mediates the spirit of math-
ematics learning through a mutually enriching teacher-student dialogue. An equal
partnership in such dialogue contributes to the learning of being a reciprocal activ-

ity (Confrey, 1995), something that affects both student curiosity and teacher in-
telligence.

Environment for approaching Fibonacci numbers

The realistic mathematics education argues for instruction to be a process that
emphasizes the importance “to recognize a mathematical concept in, or to extract
it from, a given concrete situation” (Ahlfors et al., 1962, p.190). A relevant context
for accommodating such instructional philosophy is Fibonacci numbers. To ap-
proach the concept we suggest to students the following play activities: coloring
buildings of different stories, making offspring in the rabbit problea, cutting a
square and rearranging the parts in the so-called paradox problem. More specifi-
cally, students are engaged in the following phenomenological explorations.

«  Exploration 1. Buildings of different numbers of stories are given
and one may color them with a fixed color in such a way that no
consecutive stories are colored with it. How many different ways of
coloring one, two, three, four, etc.-storied buildings are possible?

*  Exploration 2. A pair of rabbits is placed in a walled enclosure. Find
out how many offspring this pair will produce in the course of a year
if each pair of rabbits gives birth to a new pair each month starting
from the second month of its life.

+  Exploration 3. When you cut a figure and reorder the parts, the shape
may change but, the area can not. Consider Figure 1: the square is
cut into two congruent triangles and two congruent trapezoids. Can
we chose x and y so that the square can be transformed into rect-
angle as shown?

Within each activity, the same sequence of numbers, known as the Fibonacci
sequence, occurs as a result of students’ extracting appropriate concepts from
manipulative-exploratory play. Once Fibonacci numbers have come into view, they
can be explored through spreadsheet modeling; that is, numerical evidence can be
used for discovering a number of situations of similar type and extracting an
abstraction from these. Moreover, numerical evidence provides a gateway for
deve' yping induction proof of the abstraction through visualization with its
subsequent symbolization as an important point in the process of learning
mathematical concepts (Abramovich, 1995). Thus, the didactical emphasis of the
activities is both on conjecturing and developing formal proof rather than on




exploring computer-generated patterns “at the expense of discovering their
underlying relationships” (Noss, 1994, p.9). Yet the environment accommodates
learners of different zones of proximal development allowing for the diversity in
the pace of activities, in the consuming of teacher-mediated assistance, axd in the
depth of exploration. Finally, when the mystery of the paradox problem is resolved,
the use of a relation grapher enables students to make sense of the concept of the
golden ratio. Note that geometric aspects of the paradox problem can be explored
both in a traditional setting (paper grid and scissors) and in that of software setting.
Comparing off and on computer activities in resolving the problem leads to the
following important observation: when manipulating parts of a square within off-
computer activities a student uses geometric transformations such as rotation,
reflection, and translation almost automatically or spontaneously, yet these
capacities lack conscious awareness. Though the student does act consciously in
performing transformation, his or her attention is not directed toward the possessing
of geometric skill, and its nonvolitional nature is shaped by the structure of the
particular situation. On the other hand, the use of a computer ailows for the learning
of conscious awareness of the same operations while operating software. Therefore
one can use this example in order to discriminate an instructional use of
manipulatives associated with on and off-computer activities. This distinction is
constructed on the lines of Vygotsky (1987) who, using language acquisition as a
paradigm case, argued that the role of school instruction in written speech and
grammar is to make a child learn “‘conscious awareness of what he does ... [that is,
the child] learns to operate on the foundation of his capacities in a volitional manner”
(p. 206). In much the same way, learning to operate dynamic geometry software
like GSP leads to the mastery of school geometry and plays an important role in
this process.
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Figure 1. The paradox problem.
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Figure 2. Recursive strategy.
Environment for the study of combinatorics

The study of combinatorics can be nicely orchestrated through integrating
manipulative-exploratory play and computing activities. For example, consider
the following problem: In how many ways can three suits be selected from four
different suits? Combinatorial reasoning can be better acquired by clearing away
the situation through the use of manipulatives. As one in-service teacher noted: “I
feel manipulatives are probably one of the best ideas I have ever seen for showing
C(n,r) — combinations of n things taken r at a time. This will be very useful in
my upcoming lecture on combinations.”

Indeed, in the first stage manipulatives serve as a means for solving the count-
ing task so that abstraction from a number of similar arrangements of manipulatives
occur in the form of recursive definition of combinations. In carrying out this task,
we first discovered students’ involuntary behavior in creating the combinations,
something that seems to bring a chaos into the approach as the number of objects
increases. Yet, a spontaneous strategy is not a useless experience, but on the con-
trary, it allows students to reach the threshold in the development of mathematical
thinking beyond which conscious awareness of recursive strategy becomes pos-
sible. Indeed, when asked to be systematic, students often apply recursive reason-
ing: when hearts are not in use at all, three remaining suits can be selected in
C(3,3) ways; when the heart is in use, two other counterparts can be selected in
C(3,2) ways (Figure 2). This strategy possibly lacks conscious awareness of recur-
sive thinking, though, in fact, this is the case of recursion. In the words of Vygotsky
“consciousness and control appear only at a late stage in the development of a
function, after it has been used and practiced unconsciously and spontaneously. In
order to subject a function to intellectual control, we must first possess it” (cited in
Bruner, 1985, p. 24). The teacher-mediated link between spontaneous and pur-
poseful problem solving strategies thus becomes crucial for ‘good learning,” for it
is the link of the zone of actual and proximal development of the learners.




The next step in the study of combinations involves setting up on a spread-
sheet boundary conditions for combinations obtained through manipulative-ex-
ploratory play and modeling them using a recursive nature of software. It is worth
noting that the language of communication with the software might be that of
pointing to cells (a kind of the substitution of speech for concrete action) rather
than solely formula-based, and this allows students to shift the onus of both sym-
bolization and generalization onto a spreadsheet. In such a way, the software serves
as a support system that helps learners to make a non-algebraic leap from empiri-
cal data linked by an intuitive guess to the numerical projection of its generaliza-
tion (modeling data). Once a large pool of combinations come into view the activi-
ties focus on making connections among combinations and testing these connec-
tions in terms of manipulatives. In other words, the activities deal with creating
visual proofs of combinatorial propositions. One may note, for example, that
C(4,3)=C(4,1), or C(4,3)=C(3,3)+C(2,2)+C(2,1) and then justify these findings
using manipulatives (visual proofs). In doing so, one is engaged into a play on a
higher level of cognitive activity using, in fact, the same concrete embodiments
that allowed for the reaching of this level. Transferring from a special case of
identities involving numbers with combinatorial meaning to their general form
results in students involvement in the development of inductive proofs of the iden-
tities, mathematical activity stimulated and guided by computer-generated numerical
evidence.

Note that although, as observation shows, the task to discover Fibonacci num-
bers among combinations (both through exploring numerical patterns on a spread-
sheet and imparting combinatorial meaning to the coloring task) proves to be a
challenge for most of the students, the principle of “raising the ante” of the task
(Bruner, 1985) allows for maintaining students’ interest in developing mathemati-
cal concepts and for demonstration of the endless mathematical explorations through
the intertwining of different learning strands.

Assessment through reciprocai teaching

The environment described in this paper may have important implications for
an assessment practice that incorporates reciprocal teaching (Palincsar & Brown,
1984). We applied this procedure for final sessions by splitting students enrolled
in a problem solving class into equal groups, each of which was assigned to create
a task for an associate group. The instructional goal was to demonstrate how the
environment allows for students’ affluent and seemingly endless performance on
a regular task and encourages the development of mathematical ideas that are far
beyond the task’s original design. The sessions have shown that all students may
become motivated and challenged by learning mathematics, provided that a class-
room environment is conducive to students’ pursuing avenues of personal interest
and attaining ownership of concepts discovered. We conclude the paper with a
hope that computer-enhanced reciprocal teaching embodies N.C.T.M.’s (1995)
vision of an assessment as “‘a dynamic process that informs teachers...and supports
each student’s continuing growth in mathematical power” (p.6).
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